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We investigate stationary nonequilibrium states of systems of particles moving 
according to Hamiltonian dynamics with specified potentials, The systems are 
driven away from equilibrium by Maxwell-demon "'reflection rules" at the walls. 
These deterministic rules conserve energy but not phase space volume, and the 
resulting global dynamics may or may not be time reversible (or even inver- 
tible). Using rules designed to simulate moving walls, we can obtain a stationary 
shear flow. Assuming that for macroscopic systems this flow satisfies the 
Navier-Stokes equations, we compare the hydrodynamic entropy production 
with the average rate of phase-space volume compression. We find that they are 
equal when the velocity distribution of particles incident on the walls is a local 
Maxwellian. An argument for a general equality of this kind, based on the 
assumption of local thermodynamic equilibrium, is given. Molecular dynamic 
simulations of hard disks in a channel produce a steady shear flow with the 
predicted behavior. 

KEY WORDS: Shear flow; deterministic dynamics; Maxwell-demon bound- 
ary conditions; entropy production; space-phase volume contraction. 

1. I N T R O D U C T I O N  

Stationary nonequilibrium states (SNS) of macroscopic systems must be 
maintained by external inputs at their boundaries. Since a complete 
microscopic description of such inputs is generally not feasible, it is 
necessary to represent them by some type of modeling. However, unlike 
systems in equilibrium, which maintain themselves without external inputs 
and for which one can prove (when not inside a coexistence region of 
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the phase diagram) that bulk behavior is independent of the nature of the 
boundary interactions, we do not know how different microscopic modeling 
of boundary inputs, representing fluxes of matter, momentum, or energy, 
affects the resulting SNS. 

What is observed experimentally is that in regimes close to equi- 
librium, when the fluxes are small, the bulk macroscopic behavior is deter- 
mined by the unique solution of the hydrodynamic equations, with 
specified boundary conditions on the hydrodynamic variables such as 
density, temperature, and fluid velocityJ ~ The situation may change 
dramatically, however, as soon as the driving foces become sufficiently 
large for this solution to lose stability. We can then have the formation of 
coherent structures, such as rolls or hexagons, whose pattern is influenced 
by details of the boundary conditionsJ 2~ 

Even in the absence of hydrodynamic instabilities, e.g., in passive heat 
conducting systems or fluids in regimes of laminar flow, the SNS generally 
have very long range microscopic correlations, with slow power-law decay, 
which can be measured experimentallyJ 3~ This raises the possibility that 
even in regimes of hydrodynamic stability the modeling of the boundary 
inputs may have global, albeit subtle, effects on the nature of the SNS. In 
fact it is known that, even in the near-equilibrium regime, different 
modelings of the external drives produce very different types of microscopic 
measures of (what appears to be) the same macroscopic SNS. Thus, 
stochastic drives, such as thermal boundaries in which the particles acquire, 
following a collision with the walls, a specified Maxwellian velocity distri- 
bution, generally lead to stationary measures absolutely continuous with 
respect to Liouville measureJ 4~ The same is true for systems driven by colli- 
sions with some simple kinds of Hamiltonian infinite-particle reservoirs 
specified by a given distribution prior to the collisions/5~ Deterministic 
thermostatting schemes, on the other hand, yield measures singular with 
respect to Liouville measure/~' 9~ 

It is quite possible, even likely, that these great differences in the struc- 
ture of the microscopic SNS (mSNS) do not have any significant effect 
on the bulk properties of stable macroscopic SNS (MSNS). This is what 
happens for macroscopic equilibrium systems which can be described by a 
variety of microscopic ensembles, e.g., the canonical or microcanonical/~o~ 
Unlike equilibrium, however, it is far from clear at present how to charac- 
terize essential global features of mSNS. We do expect, however, that 
locally such system will be close to an equilibrium state, at least when the 
inputs are confined to the boundaries. 4~ Indeed, as we shall discuss further 
later, this property of local thermodynamic equilibrium (LTE) holds the 
key to understanding SNS of macroscopic systems in the hydrodynamic 
regime. 
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Questions regarding the nature of mSNS have recently come to the 
fore due to the combination of  computer and analytical investigations of 
SNS with various deterministic thermostatting devices, t6 to.J2 18) The 
simulations have shown that the stationary states produced by these drives 
behave, at least as far as linear transport coefficients and other gross 
properties of  MSNS go, in reasonable accord with known experimental 
and theoretical results. In addition, the simulations have found unexpected 
interesting microscopic structures in these singular measures, e.g., pairing 
rules for the Lyapunov exponents, a formula for large fluctuations in the 
phase-space volume contraction rate, etc. 

The rigorous mathematical analysis of such systems has confirmed 
some aspects of  the simulation results/9"14~ This has led GaUavotti and 
Cohen I J-~ (see also refs. 10 and 16) to postulate what they call the "chaotic 
hypothesis," based on Ruelle's principle for turbulence: 

"A many particle system in a stationary state can be regarded, for the 
purpose of computing macroscopic properties, as a smooth dynamical 
system with a transitive Axiom A global attractor. In the reversible case it 
can be regarded, for the same purposes, as a smooth transitive Anosov 
system." 

This hypothesis was shown by Gallavotti and Cohen to imply, for 
SNS produced by reversible thermostatted dynamics a formula for the fluc- 
tuation in the phase-space volume contraction rate in agreement with the 
computer simulations 1,3~ and to be generally consistent with known results, 
at least when the driving is not too large tItl (see also refs 17 and 18). It 
also implies, or even presupposes, a strong form of  "equivalence of  ensem- 
bles" for SNS with specified macroscopic flows. This is, as already noted, 
certainly in accord with experience on SNS close to equilibrium, where it 
can be understood as an expression of the existence of LTE. It may, 
however, also be true more generally, at least in some form. 

In the present paper we investigate a new class of models in which the 
microscopic dynamics in the bulk of the system is Hamiltonian and reflec- 
tion at the boundaries is deterministic and energy-conserving. This permits 
us to define a phase-space flow ) / '= .~(X) ,  X a point in (a fixed energy 
surface of) the system's phase space. In this respect our  model is similar to 
the bulk t'hermostatting schemes mentioned earlier) 6s~ Unlike those 
schemes, however, which modify the equations of  motion in the bulk of the 
fluid, somthing which is computationally useful but has no counterpart in 
real physical systems, our model is fully realistic away from the boundaries. 
In this respect it is similar to models in which the driving force is a "boundary 
layer" of reservoir particles or is given by stochastic thermal bound- 
aries. ~4'5'~9~ Our combination of realistic bulk dynamics and deterministic 
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boundary drives offers a simple model of an mSNS which can be 
investigated by means of classical dynamical systems theory. It will hope- 
fully lead to a better understanding of SNS representing real systems. 

Our main conclusion can be summarized as follows: Deterministic 
boundary-driven models, reversible or not, accurately represent the bulk 
behavior of MSNS. There is an equality in these models between phase- 
space volume contraction and hydrodynamic bulk entropy production for 
SNS of macroscopic systems in LTE. Plausible arguments of why this 
should be so and of how to connect entropy production in nonequilibrium 
states generated by different modelings of the inputs are given in Section 8. 
This is preceded by a detailed description of analytic and computer simula- 
tion results for specific models producing shear flow. A preliminary account 
of this work is presented in ref. 20. 

2. D E S C R I P T I O N  OF M O D E L S  

To make the analysis as concrete as possible we shall consider here SNS 
representing shear flow in a two-dimensional system; we imagine this to be 
the surface of a cylinder of height and perimeter L, or a square box with peri- 
odic boundary conditions along the x axis, i.e., we identify the left and right 
sides at x = _ L/2. On the top and bottom sides of the box, y = _+ L/2, are 
rigid walls at which stand watchful Maxwell demons who make the particles 
reflect according to rules satisfying the following two conditions: (i) the 
reflected velocity is determined by the incoming one and is energy-conserving; 
(ii) the particles at the top wall are driven to the right, and those at the 
bottom wall are symmetrically driven to the left. The purpose of rule (ii) is 
to imitate moving walls and thus produce a shear flow in the bulk of the 
system. The use of a two-dimensional system and of symmetric rules for top 
and bottom is for simplicity only and the reader is free to imagine instead a 
three-dimensional channel with different reflection rules at top and bottom. 

Since reflections at the wall preserve the particle speed, the reflection 
rule can be defined in terms of angles. For  a particle colliding with the top 
wall, let ~0 and - ~  be, respectively, the angles which the incoming and 
outgoing velocities make with the positive x axis, the direction of the "wall 
velocity," so that 0 ~< q~, ~ ~< n. At the bottom wall, the angles are measured 
between the velocity vectors and the negative x axis. Then, any reflection 
rule is completely specified by a function ~ = f(cp, v), where v stands for the 
speed of the particle. 

For simplicity, we only study here functions independent of v, which 
are the same for both walls, so that 

~, = f(~,), o~<~, r (2.1) 
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In particular, the identity function f(q~)=q~ corresponds to elastic reflec- 
tions, and q~ = n - ~ o  gives complete velocity-reversal reflections. 

One particularly simple reflection rules is given by 

/22/ 

which, for n/2 <~ Cpo < n, clearly satisfies (ii). Under  this rule, particles 
moving "in the direction of the wall velocity" with ~p ~< q~o reflect elastically 
at the wall, while those moving "opposite the wall velocity" ~o > cpo will 
reflect straight back, with the velocity vector reversed. This rule is nonin- 
vertible, and is discussed further in elsewhere ~ ~s~ (see also ref. 23). Here we 
shall focus our attention on two invertible rules that we found particularly 
interesting and which we used in our molecular dynamics simulations. 
They are 

= (n + b) - [ (n  + b )  2 - @( c.,o -k- 2b)] ,j2 (2.3) 

with b/> 0 and 

= c~ (2.4) 

with 0 < c ~< 1. We call these the b-model and the c-model, respectively. 
The graph of the function (2.3) is a circular arc terminating at the 

points (0, 0) and (n, n) lying below the diagonal ~ = cp. This function has 
the symmetry cp = f -  i (~b) = n - f ( n  - t~ ), which makes the dynamics time- 
reversible. Time-reversal symmetry, which is present in Hamiltonian 
dynamics as well as in the usual Gaussian thermostatted models, c6 9~ means 
that the system retraces its trajectory backward in time following a velocity 
reversal of all the particles. This symmetry plays an essential role in some 
of the analysis in ref. 15. The c-model is not time-reversible. Similarities and 
differences between the b- and c-models are therefore of particular interest 
in determining the range of universality present in SNS. We shall in fact see 
that the b- and c-models behave in a similar way. 

3. THE  S T A T I O N A R Y  STATE 

Let us consider now the time evolution and the nature of the station- 
ary states we might expect with our b- or c-dynamics for a system of N 
particles with total energy E, and average particle and energy densities 
1i= NIL'- and Y= ElL 2, respectively. For  the sake of concreteness imagine 
the particles to be hard disks with unit mass and unit diameter, so E is 
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just their kinetic energy. When b = c~ or c = 1 the boundary conditions 
correspond to elastic reflections and so, for N greater than one, but less 
than some jamming value, we expect that, starting with any initial measure 
absolutely continuous with respect to the Liouville measure on the H =  E 
surface, the ensemble density will approach (weakly), as t---> ~ ,  the 
uniform density on this surface, i.e., we expect the microcanonical ensemble 
of a system of hard disks with mixed periodic and reflecting boundaries to 
be ergodic and mixing. (There is actually, in addition to the energy, also 
a conserved total x momentum, which we fix to zero and ignore.) 

When b # co or c 4:1 the rules will clearly produce a drift to the right 
near the top wall and to the left near the bottom wall. This drift should 
produce, for L large compared to the man free path (nl~) ~, an mSNS 
representing a system with a shear flowJ ~9.20) On the microscopic level we 
expect now that any initial ensemble density absolutely continuous with 
respect to the microcanonical ensemble will evolve, as t---> ~ ,  to a station- 
ary measure fi whose Hausdorff dimension 3 is less than the dimension of 
the energy surface. 16 Io~ Such behavior is proven for a single particle subjec- 
ted to an external force moving among a fixed periodic array of scattersJ 'J~ 

We note that when both walls "move" in the same direction, the x 
component of the total momentum of the system is a monotone-non- 
decreasing function of the number of collisions with the walls. Since this is 
bounded above, the initial ensemble density must converge (at least in 
some weak sense) to a measure whose support is on configurations in 
which the particles all move parallel to the x axis. This situation is rather 
pathological. We expect our system with top and bottom walls moving in 
opposite directions to reach and stay in an LTE state at least when the 
shear is not too large. This is consistent wi th/ i  being singular: even with 
its Hausdorff dimension being only a fraction of the dimension of the 
energy surfaceJ ~o~ 

Assuming that our system will indeed go, for N large, r~ and e fixed, 
to an MSNS representing a fluid in shear flow, as is indeed seen in our 
computer simulations to be described later, we consider now briefly the 
purely hydrodynamic description of such an MSNS. This is given by the 
stationary solution of the compressible Navier-Stokes equations for the 
fluid velocity in the x direction u(y), the temperature T ( y ) ,  and density 
n(y) in a uniform channel of width L in which top and bot tom walls move 

Here the Hausdorff dimension of the measure f i  is, in accord with Young ~:l~ and PesinJ -'2~ 
the minimum of the Hausdorff dimension of subsets of full measure. (Other definitions of 
Hausdorff dimensions of measures are sometimes used, which makes this notion confusing.) 
The Hausdorff dimension in the Young-Pesin version coincides with the information dimen- 
sion for systems with nonvanishing Lyapunov exponents? -'-') Note that the support of the 
measure fi may or may not be the entire phase space. 
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with velocities _+ ut, in the x direction, have the same temperature Tb, and 
we impose a no-slip boundary condition. ~ 

These equations, which are derived on the assumption of LTE, ~ 
have the form ~ L~,~ 

d 
T p(n, T) = 0 ay 

d /  d.~ 
)-7 tq  7~y) = 0 (3.1) 

a f gt?-V)+,jwyl o 

Here p(n, T) is the (local) equilibrium pressure of the system at constant 
density n(y) and temperature T(y), rl(n, T) is the viscosity, and K(n, T) is 
the heat conductivity. Equations (3.1) are to be solved subject to the 
boundary conditions u ( + L / 2 ) =  +u/,, T(+L/2)= Ti, and fixed average 
particle density L-J~L/~/, n(y)dy=fi. This gives 

p(n, T)=p(no, To),  du/dy=H/rl, - xdT /dy=J(y )=Hu(y )  (3.2) 

where no=n(0),  To=T(0) ,  H is the constant x-momentum flux in the 
negative y direction, J(y) is the heat flux in the positive y direction, and 
we have used the symmetry of the flow about y = 0. These equations can 
be solved once p, K, and r/are given as functions of n and T. The solution 
will be unique when the average shear 7,= 2u~,/L is small/24~ 

Equation (3.2) can be integrated further to give 

u(y) = Hy V ~yy= - ~  d)~ u-" (3.3) 

so that 

1 1 ft_ dy (3 .4)  
H=8), ,  ~ = L J o  q(n, T) 

For dilute gases, q/K is a constant independent of n and T, in which case 

T ( y ) = T o - ~  ~ u2(y) (3.5) 
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In some cases the y variation in r/ and ~" are so small across the 
channel that we have an essentially linear flow regime with 

u(y) = D', T(y)  = Tn - (q/2x)),2y2, H =  q~ (3.6) 

The constancy of p together with the specified average density then deter- 
mines n( y ). 

4. ENTROPY P R O D U C T I O N  IN SNS 

Entropy plays a central role in determining the time evolution and 
(final) equilibrium states of isolated macroscopic systems. Its microscopic 
interpretation as the log of the phase-space volume of all microstates 
consistent with a specified macroscopic description was well understood 
by Boltzmann and the other "founding fathers" of statistical mechanics, 
although there is still much fuzziness and outright confusion surrounding 
the subject. We refer the reader to ref. 25 and references there for a discussion. 

The role of entropy and/or entropy production in SNS is also very 
important, although much less clear. By their nature truly SNS cannot 
occur in an isolated finite system evolving under Hamiltonian (or quan- 
tum) dynamics--the only truly stationary macroscopic state for such a 
system being the equilibrium one. The situation can be different for ab 
initio infinite systems, ~26j but we shall not discuss that here. We shall 
instead describe now various aspects of entropy production in the simple 
SNS corresponding to stable shear flow in the finite systems considered 
here. We will then discuss in Section 8 the connection between them, and 
what they teach us. 

4.1. Hydrodynamics 

The hydrodwmmic entropy production tr per unit volume in our 
stationary system is given by the Onsager form It7~ (see in particular 
Chapter 14 in ref. 1 and Section 2.2 in ref. 7) 

H du J d d 
o'(y) =-~ ~yy-I-(y) ~y ( 1 )  = Hd--fy ( T )  (4.1) 

where we used (3.2) in the second equality. The total hydrodynamic 
entropy production/~ due to the dissipative fluxes in the steady state in then 

/~= fvo~ ..... cr d r =  fsurf.,,:~ [ Hu/T]  dS= fsL,,.,~,~A/T ds 

= Ji,/T,, = 2L2II(u,,/L)/T,, = L2IIT/T,, (4.2) 
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where f~, is the heat flux per unit length and ]~, the total flux to the walls 
and we have taken the channel to be of length L with periodic boundary 
conditions in the x direction. 

Equation (4.2) is interpreted in the macroscopic formulation of irre- 
versible thermodynamics ~ as an equality, in the stationary state, between 
the hydrodynamic entropy produced in the interior and the entropy carried 
by the entropy flux, equal to Jh/T~,, to the walls of the container. To main- 
tain such a steady state in an experimental situation requires external 
forces acting on the walls to make them move with velocities +__uh. The 
work done by these forces, [Ilu~,[ per unit wall area, is converted to heat 
in the bulk of the fluid by the viscosity and then absorbed by the walls 
acting as infinite thermal reservoirs. The steady-state hydrodynamic 
entropy production in the system/~ is also carried to the walls by this heat 
flux. If we imagine the wall as "equilibrium" thermal bath at temperature 
T~,, then/~ is equal to the rate of their entropy increase (dSr = dU/T):  note 
that we are assuming here that there is no slip between the temperature of 
the fluid at the walls and the temperature of the walls. 

4.2. Microscopic:  Stochast ic  Reservoirs 

The existence of macroscopic steady states satisfying the compressible 
Navier-Stokes equations (3.1) can be proven in suitable scaling limits by 
starting from the Boltzmann equation. ~24~ In such analysis the wall are typi- 
cally modeled by stochastic thermal boundaries; following collisions with 
the wall, particles have a Maxwellian velocity distribution with mean ___ u~, 
and temperature 7"/,. Going beyond the mesoscopic description given by 
the Boltzmann equation, it is expected that such thermal boundaries will 
produce similar SNS for general fluid systems, which will be described, on 
the microscopic level, by a stationary measure on the phase space having 
a density/Y absolutely continuous with respect to Liouville measure. ~5~ In 
fact it is possible to show, for systems in contact with a thermal reservoir 
at temperature T, that the total "ensemble entropy production" 

.~'(t) = SG(t)  + ( Y ) / T  (4.3) 

is nonnegative. ~5~ Here 

SG( t ) - SG(It( X, t ) ) - - I l l ( X ,  t ) log ,u(X,  t ) d X  (4.4) 

is the system's Gibbs entropy, d X  is the Liouville volume element in the 
phase space, and ( J )  is the ensemble average of a phase-space function 
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J(X) representing energy flux to the reservoir. At the same time the rate of 
change of the man energy in the system is given by 

d f pH dx = ( I:I~ = - ( Y) + ( (~') (4.5) 

where (/,~') is the average mechanical work done on the system by some 
external force, e.g., one produced by moving rough walls to the system in 
a channel. ~ tg) 

In the stationary state obtained in the limit t ~ co, l~ =fi,  so ( H )  and 
SG are constant with ( W )  = ( J )  and :~ = . ~ =  ( J ) / T =  (W) /T .  Hence if 
we identify (Y)  with Jr,, then .~ is equal t o /~  given in (4.2). For a system 
in contact with only a thermal reservoir, the stationary state is the equi- 
librium one and .~(t)=d/dt [ S G - ( H ) / T ] - - , 0  as t ~  ov (see ref. 27 and 
Section 8). 

4.3. Microscopic:  Determinist ical ly  Driven Systems 

Let us turn now to our models, where the flow is deterministic and 
collisions with the boundaries conserve energy. It is not clear at all a priori 
what should now correspond at the microscopic level to the hydrodynamic 
entropy production in our system. Following the work in refs. 7-9, we note 
that for a deterministic flow in the phase space the rate of change of the 
systems Gibbs entropy defined in (4.4) is given by 

Sc;(t) = f/~(X, t)(div X ) d X =  - M ( t )  (4.6) 

This vanishes for an isolated system evolving according to Hamiltonian 
dynamics for which d iv ) / '=0 ,  but not for dynamics which does not 
conserve Liouville volume. Furthermore, since we expect the stationary 
measure for our dynamics /~ to be singular with respect to Liouville 
measure, we will have S G ( t ) ~ , _ . , - ~ .  At the same time since the 
convergence of p to/~ is in the weak sense, we might have a nonvanishing 
limit 

5~c~(t) ~ f fi(X)(div X) dX= - ~ 1  (4.7) 

We can then interpret .~t, the average compression rate of phase-space 
volume per unit time, as the "measure entropy production" in the station- 
ary state. The existence and negative of the limit in (4.7) was proven in 
ref. 9 for a simple bulk thermostatted model. The nonnegativity o f /Q  for a 
stationary fi is proven in a suitable general setting by Ruelle. (23) 
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The behavior of ~r in the driven deterministic case is to be con- 
strasted with the case of stochastic reservoirs consider earlier, where the 
stationary masure has a smooth density with ~r 0 as t ~  ~ ,  while 
. ~ ( t ) ~ . ~ , = R ,  the positive hydrodynamic entropy production in the 
MSNS. Now in the bulk thermostatted models, c7 9~ the equations of 
motions are such that M is automatically equal to the ensemble average of 
microscopic quantities, which can be identified with thermodynamic forces 
and fluxes such as appear in the macroscopic entropy production. This is 
not the case for the models considered here. We have no a priori  prescrip- 
tion of u or T anywhere in the system and phase-space volume gets com- 
pressed only at collisions of a particle with the wall, the bulk dynamics 
being Hamiltonian. We therefore need to investigate here the relationship, 
if any, between _/~ and /~  for our system. Unfortunately, a direct computa- 
tion, using only the given dynamics, is totally out of reach of our present 
mathematical abilities. What we shall do instead in the next section is to 
make some reasonable assumptions on the nature of the microscopic SNS 
in the limit when our system becomes of macroscopic size. It will turn out 
that these assumptions, which are satisfied for a system in LTE, lead to 
an equality between )~r and /~. This will be checked and confirmed by 
computer simulations in Section 7. We will then argue in Section 8 that 
such an equality holds in general when the macroscopic system is in a state 
of LTE. 

Remark.  It might be feasible to carry out such a rigorous analysis 
of our model within the context of the Boltzmann equation, in analogy to 
what is done for stochastic walls in ref. 24. Numerical simulations on 
models b and c using the direct simulation Monte Carlo method for 
simulating the Boltzmann collision term inside the channel are now being 
c a r r i e d  out .  '2~'~ The results appear consistent with those in Section 7. 

5. C A L C U L A T I O N  OF M IN THE H Y D R O D Y N A M I C  REGIME 

To obtain the rate of compression M for our system, we observe that 
our dynamics preserves phase-space volume except at collisions of a 
particle with a wall. Since these collisions take place "instantaneously," we 
can compute" the compression occurring at a single collision--ignoring the 
rest of the particles. The compression is then just equal to the ratio of 
the "outgoing" one-particle phase-space volume (dx' d)/dv' , .dv' ,3 to the 
incoming one (dx  dy dr,. dr,.) in a time interval dt containing the collision. 
A little thought show that d x ' =  dx and 

Idvi,-dv.',./dv,. dr.,.] = Iv' dr'  dq~l/( v dv d(/)l = Idq~/d4)l 
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where ~b and qJ are the incoming and outgoing angles, related by ~9 =f(~b). 
Similarly, I dy ' / dy l  = Iv',. dt/v~, dt[ = [sin ~k/sin ~b[. Hence in every collision 
between a particle and the wall the phase-space volume is changed by a 
factor 

sin ~ dip _ sin f(q~) dcosf(q~) I 
sin q~ d~o s-~n~ If'(~0)l = d--~os~ 

(5.1) 

where f defines the reflection rule (2.l). The phase-space volume will be 
reduced or increased depending on whether (5.1) is smaller or larger than 
unity. 

The mean exponential rate of compression of the phase-space volume 
per unit time is then given by 

M= -2(N,. log[f'(cp) sin f(q~)/sin q)),~ (5.2) 

where N,.(q~) is the flux of particles entering a collision with the top wall 
at angle cp. The factor 2 comes from summing over top and bottom walls 
and the average is taken with respect to the stationary measure ft. 

An exact evaluation of h,Sr given in (5.2) is currently far beyond our 
abilities. To proceed further, we assume now that in the hydrodynamic 
regime corresponding to L >> l and 7/"~ 1, where l ~ (ztff) ~ is the mean free 
path between particle-particle collisions, the density p(v~,v2) of the 
velocity vectors v = (v~, v2) of particles entering a collision with the walls is 
Maxwellian with the (to be determined) mean value (6, 0) and temperature 
T,,. for the top wall [ ( - 6 ,  0) and T,,. for the bottom wall]. That is, 

p(vl,v,)=(2~T;~)-,/2v2exp( (vt - 6)2 + v{) 
_ , v2>0 (5.3) 

It will be convenient to rewrite the density (5.3) in polar coordinates, 
v~ = r cos 0 and v2 = r sin 0, 

1 r 2 sin 0 exp v- + r- - _vr cos 0 0 ~< O ~< rr (5.4) 
p(r, 0) = x / ~  T3:2 -- 2T,,. ' 

and denote by ( F )  the average of any function F(r, 0) with respect to 
(5.4). 

The average momentum transfer "from wall to wal l" /7  is now given by 

fl=n,.( dv,) =n,.( vj.,,u,-v,.~,) (5.5) 
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where n, is the "collision rate," i.e., the average number of collisions with 
the top wall per unit time per unit length, which will have to be computed 
later. In our polar coordinates (r, 0) this value is 

1 7 = n , . < r ( c o s f ( O ) - - c o s  0)> 

n,. [cos f ( 0 ) - c o s 0 ]  1.3 sin 0 

x exp --  -~ , , .  �9 dO dr (5.6) 

In order to keep the "velocity" of our walls from growing with L when 
L becomes macroscopic, which would certainly take the system away from 
local equilibrium, we need to consider situations in which D, like the 
hydrodynamic H in Section 3, is of order (l/L). This requires that the 
reflection rules (2.1) be close to the identity, i.e., we put 

~, = f(q~) = cp + 6 f  ~(cp) + 62f,_(cp) + 0(62)  (5.7) 

with f~, f ,  some fixed functions on [0, n]. In fact, as seen from (5.6), 6 has 
to be O ( L - ' ) .  For our b-model (2.3) we can set ~ =  I /b ,  and then (5.7) will 
have the form 

= cp - 6~o(n - ~o) + O~-~p(n - ~o )2 + o(~2) (5.8) 

For our c-model (2.4) we can set 6 = I - c ,  and so 

ff = ~o - O~0 (5.9) 

(Our calculations, however, are not restricted to these two models.) 
Expanding/7  in ~ gives 

/~ = n,.(r[ - s i n  O~f , (O)  + O(d2)])  

_ x/~n'~T;a, .'2 J,,f"-1,7f'(O)r3sinZOexp( - t72 + r2 - 2tYr2~w cos 0 ) /  dO dr 

+ O(fi 2) (5.10) 

The last double integral depends on the so-far-inknown parameters t7 and 
T,,., and we denote it by 1(6, T,,.). 

We next assume that the steady state will indeed correspond to a 
shear flow described (on the average) by the hydrodynamic equations in 
Section 3, and identify the/]r with H and T,,. with Th there. Since, however, 
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we are not given Th and u~,, they have to be determined from the given 
data, assuming the system to be in LTE. Thus the determination of Tw is 
now done on the basis that the system has a fixed energy E so that 

s: [ " ]  1L n(y) T(y)+~u-(y) dY=L-5_=~ (5.11a) 

while the man horizontal velocity of the particles near the wall can be 
taken as the man between ingoing and outgoing velocities, 

Ut, = (Vl.ou t + Vt.i,)/2 = 17+ 0(6) (5.11b) 

The solution of (3.1) which determines u(y), T(y), and n(y) in terms of uh 
Tt,, and ri will now be determined entrirely by the a priori given e, n 
and the rule f(q,),  via (5.10) and (5.11). The computation becomes 
straightfoward in the linear approximation (3.6); see Eqs. (6.6)-(6.9) in the 
next section. 

We study now the case 6 ~ 0 and L = a/6 with some fixed a > 0. Then, 
the wall velocity uh is proportional to HL and thus does not vanish as 
6--*0. Using (4.2) and (5.10), we find that the hydrodynamic entropy 
product ion/~  in this limit is given by 

~= 2an,.6 /(6, T,,.)+o(l 
x / ~  T,5,fl 

(5.12) 

To obtain the compression rate A~t in this limit we expand (5.2) in 6 
using our ansatz (5.3). This gives, upon replacing N, by 2n,L, 

3~t/(2n,. L) = -- ( log [ f ' (  cp ) sin f( cp )/sin cp ) ) 

= --(f , (q~) cos cp/sin cp) 6-(J'i(q~)) 6+o(6) (5.13) 

Now, integration by parts yields 

( f i ( ~ o ) >  = - f , ( 0 )  p,,(r, O) dO d; 

where Po stands for the partial derivative of the density (5.4) with respect 
to 0: 

cos 0 fir sin 0 
po(r, 0) = sin 0 p(r, O) __T,,-- p(r, O) (5.14) 
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Combining (5.13) and (5.14) then gives 

.Q= -26Ln,.6T,~ ' ( f t ( 9 ) r sin 9 )  + o( L6 ) 

2an,. 6 
- 1(6, T. , )  + o ( 1 )  2 

A shorter way to get (5.15) is to rewrite the middle in (5.13) as 

(5.15) 

dr, \ / l og  (1 ' d[c~ - c~ 9]'~ ((s in (p) dcos ~o / + ~cos~- ) ) = - ~  +0(8) (5.16) 

and then do an integration by parts using cos 0 as a variable. The leading 
term in (5.16) will be recognized as corresponding to (4.6) for the con- 
tinuous time action of the thermostats; see the Appendix. 

The leading term in the expansion of h,l is thus exactly the same as in 
that of/~, hence 3 t  and/~  become equal in the hydrodynamic limit, L ~ oo. 
The essential requirement for the equality is the validity of (5.14). [This is 
weaker than (5.3), permitting multiplication of the Maxwellian there by an 
arbitrary function of r, but we do not know of any physically reasonable 
non-Maxwellian p which would satisfy (5.14).] The equality between 
a n d / Q  in the hydrodynamic regime is thus a nontrivial consequence of our 
(local equilibrium) assumption (5.3). As already noted, this is an importan 
difference between our models and the bulk thermostatted models of 
refs. 7-9. The relation between phase-space volume compression and what 
looks like entropy production is so built into the structure of the dynamics 
of the latter that there equality holds, essentially by definition, even for 
systems consisting of just one or a few particles which are certainly not in 
local equilibrium. This is not the case here. The equality fails for systems 
with too few particles to be well described by hydrodynamics, as is seen in 
the next section. 

6. S M A L L - 6  R E G I M E  

Before presenting our numerical simulations, which were obviously 
done at finite (and not so large) L, we consider the consequences which 
can be drawn from our assumption (5.3) when 6 ~ 0 and L is (relatively) 
large but held fixed. Now the generated shear flow in our system will only 
be approximately described by the hydrodynamic equation (3.1). Further- 
more, u,,. as well as R and )~" vanish as 6 ~ O. Interestingly enough, there 
is now a difference between the b- and c-models with M/R remaining finite 
for the b-model as ~ 0 (close to unity for moderately large L), while 
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becoming infinite for the c-model. As we shall see, ho~vever, this is con- 
nected with the details of the c-model, rather than with its lack of time 
reversibility. 

To compute /~ and h~t in this case it will be necessary to expand 
various quantities up to second order in `5. Thus, 

/~/(2n,.L) = ( l o g [ f ' ( 9 )  sin f(cp)/sin 9 ]  ) 

= (J'~(~p) cos q~/sin ~p) 5̀ + (J"~(~o)) ̀ 5 

+ (f_,(q~) cos (a/sin 9)  5̀2 + ( f2(9))  5̀2 
_ � 8 9  . ,  ) 2 ) , 5 2 _ 1  . . . .  `5_, [y,(cp ] _~ ( J  ;(q,)/sm- q~) +0(`5-') (6.1) 

This expansion is of course meaningful only if the coefficients of 5̀ and 5̀2 
are finite, which requires that J l ( 0 ) = f l 0 z ) = 0  and that f t  has finite 
derivatives at both 0 and ~. Our b-model satisfies these assumptions 
because f l ( 9 ) = - q ~ ( ~ z - c p ) ;  see (5.8). The computation of ~r for the 
c-model, which does not satisfy fl(z~)=0, will be done separately. 

In order to compute the coefficients in the expansion (6.1), we need to 
expand the density (5.4), which, using (3.2) or (3.6), depends on `5 through 
the quantities 6=  0(`5) and T,,.= 1/2+ 0(`5 2) to first order in `5. This gives 

p(r,O)=2rc-tZr2e-"2sinO+4rc 1"-6r3e-'2sinOcosO+o(`5) (6.2) 

/14= (Ct + C2) 62+0(`5 2) (6.3) 

with 

C~=8q  ( l - Z )  -2 (6.41 

)2 
- -  - -  J l ( O )  s i n - "  0 dO 

- n , L  

x {fT(O) s in- '  O+[f;(O)]2sinO} dO (6.5) 
) 

We assume now that for small `5 and moderate L, of the kind used in 
our simulation, the system is reasonably well described by a linear shear 
flow, Eq. (3.6). We can then find the relation between 6 and `5, 

~= 1 - fL(O) sin-' 0 dO+ 0(`52) (6.6) 
2~ 1 x/rx n,.L ) 
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Similarly we get 

and 

2n,.6 f~- 
H =  - - - ~  ~'~f,(O) r 3 s i n 2 O e - ' - ' d O d r + O ( 6 2 )  

no6 n 
- v / ~ I  ~ f ' (O)  s i n 2 0 d O + O ( 6 2 )  

K 2LHv,,. z,-n~o- 1 -  q - 
T,,, zcr 1 

(6.7) 

x f i fO) sin -~ 0d0 +o(6"-) (6.8) 

The expression fo r /Q  in (6.3) in terms of 6 and L is 

1 ~ - -  2L2n~62 f l ( 0 )  sin 2 0 dO - 
nq 

1L  ' ( 1  1/ 
+ ~  nc6- -- n--~.L) 

x {f~(0) s in- '  O + [ f [ ( O ) ] 2 s i n O }  dO+o(6"-) (6.9) 

Comparing (6.8) to (6.9), we see that the term o f / ~  proportional to 
L 2 coincides with the corresponding term of/~, while the terms of order 
L differ. The difference between )Q and /~ thus gets relatively small as L 
increases, with the value of )Q remaining slightly larger than the value of 
K as 6---, 0. This is in agreement with the computer simulations. 

We now calculate ASt for our model, where, according to (5.9), 
fl(cP) = - ~p and f2(~0) ~ 0. The expansion (6.1) now has a singular term 
and so we need to use the original formula (5.2) 

. Q =  -2Ln,.{ln(1 - 6 ) +  <In sin[(1 - 6 )  ~o]> - <In sin r 

= -2Ln~( Io  + It - 12) (6.10) 

where Io = - 6 +  0(6 2) and the two other terms involve integration with 
respect to the density (6.2). It will be sufficient to integrate only with the 

822/86,5-6-5 
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zeroth-order terms there since corrections will, as before, produce terms of 
order 62, which we can now disregard compared to the leading term. We 
find 

and 

This yields 

12 = ( In sin ~p) = ~ sin 0 In sin 0 dO = In 2 - I 

I, = ( ln  sin[(l  - 6 )  cp]) = �89 s inOlns in[ (1-6)O]dO 
I 

It =In  2 -  1 + 6 + ~ 6 - 1 n  3+ 0(62 ) 

Combining the expansions for I . ,  I , ,  and 12 gives 

- - I  "~ " /Q=  - 2  z~-Ln.6- In 6 + 0(3"-) 

The corresponding expression for K has no singular terms, 

811 1 -- + o(~ 2) 

This gives 

(6.11) 

(6.12 

(6.13 

(6.14 

(6.15) 

C2 -;'r3n~L2 11.9202n,L (6.18) 
8q 

where 

R e m a r k .  
of/Q: 

)Q= - 2 -  n-Ln, 6- In ~5+ C262+ 0(63) (6.17) 

M/R = const In(I/3) + O( 1 ) ~ co (6.16) 

In other words, for our c-model, when L is finite and 6 ~ 0, the quantities 
~t" and /~ have different rates of convergence to zero! 

We also calculated the second-order term in the expansion 
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7. N U M E R I C A L  R E S U L T S  

Computer  simulations for our b- and c-models were performed with 
N =  100 and N = 200 hard disks of unit mass and diameter a = 1. We kept 
the volume fraction occupied by the disks, nr~/4, equal to 0.1. Our system 
was thus in the dilute-gas phase. For N = 100 this corresponds to L = 28.0 
and for N =  200 to L = 39.6. The mean free path l at this density is about 
2.3, ~27~ so L/I~  17 for the latter. (Discrepancies between results of the 
simulations and of hydrodynamics can therefore be expected a priori to be 
of order 2ut,/17.) 

The positions of the particle centers were chosen randomly (without 
overlap) in a domain Ixl ~< L/2, lY[ ~< ( L - 1 ) / 2 .  The initial velocities were 
generated randomly with subsequent normalization of the total kinetic 
energy so that 2 E =  Z v,.-" = N. 

There is an obvious instability in the dynamics, and the round off 
errors accumulate at an exponential rate. In fact, the system loses its 
memory completely after every 100-200 collisions in the box. The dynami- 
cal meaning of computer simulations of unstable dynamical systems like 
ours is a difficult question, which has been discussed recently in the 
literature. ~2s~ One way to think of roundoff errors is a small perturbations 
of the deterministic trajectory of the phase point made at every collision. 
So, instead of a true trajectory, we can only track a perturbed one, or a 
pseudotrajectory. Then the question is--what are the quantities measured 
by averaging along such pseudotrajectories? 

One possible answer is given by the so-called shadowing lemma ~29~ 
(for discontinuous dynamics see ref. 30). It says that for smooth hyperbolic 
systems every pseudotrajectory is shadowed (approximated) by a real 
trajectory. The distance between the two trajectories is of the order of the 
computer accuracy. This may justify averaging over computer-generated 
pseudotrajectories for smooth hyperbolic systems, although it certainly 
does not guarantee that these finite-time averages represent typical 
behavior. ~2s~ Moreover, our dynamics is not smooth, and hyperbolicity 
cannot be easily established. Trust in the results of our simulations, like all 
others done on such unstable dynamical systems, therefore relies mainly on 
faith in some kind of typicality resulting from the (pseudo) random effects 
of the rouffdoffs. ~2s~ 

In any case, to prevent the system from leaving the energy surface due 
to roundoff errors, the total kinetic energy was renormalized after every N 
collisions in the box. 

With the above reservations we believe that the results to be described 
are statistically reliable within 1%. This is based on various checks com- 
paring different runs and different levels of computer precision. For each 
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Fig. I, Velocity profiles u I' for tile models b =  10 and c=0.9.  

value of b and c we averaged over about 25,000 collisions per particle with 
other particles and about 1200 with the walls. We also changed the com- 
puter precision from single (7 accurate decimals) to double (14 decimals) 
and the so-called long double (19 decimals) to make sure the results were 
stable. Most of the programming was done in the C language on an 
80486/DX-66 PC and on a SUN SPARC station 1000 at the University of 
Alabama at Birmingham. 

In each run the vertical height occupied by the centers L - 1  was 
divided into 20 equally spaced horizontal layers and time averages of the 
density n(y), mean x-velocity u(y), and variances ( ( v , . - u )  2) and (v~)  
were taken. We also recorded time averages of x-momentum transfer from 
the walls H and the compression rate M. 

Figures 1 and 2 show typical velocity and temperature profiles u(y) for 
the b- and c-models with N = 200 particles. The velocity profiles are almost 
linear and the temperature profiles T(y)  = � 8 9  u(y)]  2 + v~.) almost 
quadratic, away from the walls, consistent with the approximation (3.6). 

I E I I I 
-0.5 

b =  10 

E I I E ~  
"0.5 

c = 0 . 9  

~ I ~ !'~ T I'JI 
0.5 

Fig. 2. Temperature profiles T(r)  for the models b =  10 and c=0.9.  
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The deviations from linearity near the walls are due to the dependence of 
both t /and h- on T a n d  n, which means that we should use (3.3) rather than 
use (3.6). Since pl(n, T)~ x/@, this will indeed lead to increases in the slope 
near the wall. There are of course also effects due to deviations from the 
hydrodynamic limit of O(2uhl/L), but these are harder to compute. 

We estimated the shear rate du(y)/dy by the least square fir of a line 
u ( y ) = T y  to the experimental velocity profile and used the experimental 
momentum transfer from wall to wall H to find the average shear 
viscosity as defined in (3.4), 4 =  HI7. To mitigate the problem arising from 
the nonlinearity of the profile near the wall, we used only the data in the 
bulk of the system, from level 4 to level 17, i.e., we excluded the top three 
and the bottom three levels. Table I presents the experimental values of 
the shear viscosity computed for the b- and c-dynamics with N =  200 par- 
ticles. The essentially linear dependence of H on d is certainly consistent 
with (6.6). 

The shear viscosity of hard-disk fluids can be estimated via Enskog's 
modification of the Boltzmann equationJ 3''321 It gives the value 

/~E = ? ]d i lu t cEz  - I  ..[_ bn + 0.8729z( bn) 2 ] (7.1) 

where r/d~,~ is the value obtained from the Boltzmann equation '3'' 

k/k/k/k/k/k/k/k/k/~ 1 
/ldilutc = | ' 0 2 2  ~ 4 ~ -  (7.2) 

for disks of unit mass and diameter. In (7.1) b is the second virial 
coefficient, b = n/2, and X is the Enskog scaling factor, which is just the 

Table I. Computed  and Theoretical Values of q 

Model H~.xp i i~r Enskog q 

b = 10 6.03 x 10 -'~ 0 .204  0 .209 

b = 2 5  3 . 1 2 x  10 -3  0.213 0 .219 

b = 50 1.66 x 10 -3  0.221 0 .222 

b = 100 0.85 x 10 -3  0.218 0 .222 

b = 200  0,43 x 1 0 - 3  0 .216 0 .222 

c = 0.90 4 .87 x 10 -3  0.213 0 .214  

c =  0.95 2.82 x 10 - 3  0.221 0 .220 

c = 0.97 1.77 • 10 - 3  0 .206 0.221 

c =  0.99 0 .62 • 10 - 3  0 .229 0 .222 
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equilibrium pair-correlation function at contact. We have estimated Z by 
using the pressure equation for hard-disk fluids, 

~P = 1  rc 
nk T + -2 nZ (7.3) 

and its virial expansion in the number density n, or equivalently the "scaled 
particle" approximation 134"~s~ 

p / n k T =  1 + bn + ban 2 + bzn 3 + . . .  ~ ( 1 - ~n/4) -2 (7.4) 

In our case bn = 0.2, and we get 

lh~ ~ 1.081qoi,ut~ (7.5) 

The value of JlE so computed using the measured mean temperature 
and density in rows 4-17 is shown in the last column of Table I. The agree- 
ment is very good, as would be expected for the low-density system we are 
considering. 

We next checked the constancy of the pressure p(n, T). To do this, it 
is important to note that Eq. (7.3) is valid, even for uniform equilibrium 
systems, only in the bulk, i.e., at distances from the wall large compared to 
the equilibrium correlation length. For  our  dilute-gas system this length is 
of order a = 1. Near the wall the density becomes nonuniform, with the 
density at the wall n,,. equal to p /kT;  T is the uniform equilibrium tem- 
perature/ 3~ Since the hydrodynamic equations (3.1) are valid on a scale 
which is very large compared to any microscopic scale, this variation in 
density is not considered there. The situation is very different, however, for 
our computer simulations, where we can expect to see these density varia- 
tionsJ ~9~ Indeed, the pressure defined as the average ),-momentum transfer 
from the top wall in the y direction per unit length and unit time would 
be, using (5.3), in analogy to (5.6), equal to n , . ( r ( s i n f ( O ) + s i n O ) ) .  This 
would reduce to n . . k T  to zeroth oder in ft. 

We present in Table II experimental values of 77, T, as well as the bulk 
pressure defined in (7.3) in the different layers, taking the man of the values 
in the layers situated symmetrically about the middle. Here the density is 
given by the average number of particles on each level Since 17(y) increases 
rapidly as we approach the wall, we do not have a simple formula for p in 
the top column. Using n,,. = p / k T  leads to an extrapolated density at the 
wall of about 13.4 and 13 for the b = 10 and c = 0 . 9  cases, respectively. 

The agreement between the prediction of the hydrodynamic equation 
(3.6) and the simulation results shows that the Maxwell-demon boundary 
drives indeed set up, in the limit L ~ or, an MSNS for shear flow. We 
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Table II. Experimental  Measurements of the x Velocity,  Temperature T, 
Density n, and Pressure p on All Levels for the b = 0  and c = 0 . 9  Models 

h = 10 c = 0 . 9  

Level v,. T n p v,  T n p 

1 0.584 0.399 11.35 - -  0.449 0.439 10.70 - -  

2 0.502 0.420 10.35 5.330 0.383 0.453 10.15 5.722 

3 0.437 0.430 10.13 5.338 0.333 0.459 10.06 5.724 
4 0.374 0.438 9.97 5.337 0.289 0.465 9.94 5.713 

5 0.315 0.443 9.86 5.331 0.244 0.469 9.89 5.712 

6 0.257 0.449 9.77 5.34[ 0.197 0.471 9.85 5.713 

7 0.198 0.454 9.67 5.341 0.153 0.473 9.84 5.715 
8 0.141 0.455 9.67 5 3 4 2  0.i I 1 0.474 9.82 5_720 

9 0.084 0.457 9.63 5.344 0.067 0.475 9.82 5.718 

I 0 0.028 0.459 9.60 5.340 0.022 0.476 9.80 5.714 

therefore computed the values of /~ and .~r defined for our shear flow by 
formulas (5.2) and (4.2) with H given by (5.5) experimentally, by using 
time averages of the appropriate dynamical functions in our simulations. 
We also computed these quantities numerically according to our integral 
formulas using the Maxwellian ansatz (5.4). In both these computations we 
used the experimental values of T,,., v,,., and n,. The results are presented 
in Table III. The last column of Table III gives the leading term in ~, 
computed from (5.12), for which /~r=/~. 

The agreement between the so-computed theoretical values of M and 
/~ and their experimental values is quite good. This suggests that the 
integral formulas (5.6) and (5.2) with the Maxwellian density (5.4) are 
quite accurate. 

We also tested directly this hypothesis using a chi-square test and 
the Kolmogorov-Smirnov test (see, e.g., ref. 37). Both tests accepted the 

Table III. The Experimental and Theoretical Values of M and R 

Model  Mth / A4 ~xp Rth / R,:xp M lr 

b = 10 0.761/0.740 0.695/0.767 0.867 
b = 25 0.161/0.157 0.156/0.162 0.169 

b = 50 �9 0.0429/0.0417 0.0422/0.0428 0.0437 
b = 100 0.0113/0.01 I0 0.011 I/0.0112 0.0113 

b = 200 0.00294/0.00285 0.00289/0.00289 0.00291 

c = 0.9 0.448/0.444 0.405/0.432 0.402 
c =0 .95  0.149/0.148 0.127/0.131 0.126 

c = 0.97 0.0641/0.0632 0.0523/0.0531 0.0518 
c = 0.99 0.00871/0.00868 0.00628/0.00632 0.00625 
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distribution (5.3) for the velocity vectors of incoming particle colliding with 
the wall for various values of b and c. Just to determine the sensitivity of 
our procedure, we tested in the same way the distribution of the outgoing 
velocity vectors [whose Maxwellianity would contradict our assumption 
(5.3)]. As expected, both tests frequently rejected this last hypothesis for 
several values of b and c, indicating that the reflection rule (2.1) distorts the 
velocity distribution in a considerable way even for small 6. 

Remarks. (1) Our analysis in Section 6 shows that the quantities/Q 
and K are of order v~.. as 6 ~ 0, with the exception of 2Q for the c-model, 
which is of order v~. In(l/v,,,). Figure 3 shows the ratios M/v~. and R/v~,, as 
functions of 6. For the b-model they both "nicely" converge to the same 
positive constant ( ~  1.6) as 6 ~ 0. For the c-model the ratio R/v~. also 
converges to a number ( ~  1.55), while M/v~,, apparently grows to infinity, 
in agreement with the prediction in Section 6. 

(2) An interesting question is how the velocity near the wall v,. 
depends on the model parameter 6 as the size L is held fixed and 6 is not 
very small. Figure 4 shows the experimental values of v,,~ versus 6 as 6 
varies between zero and 0.5. A linear regression for small 6 is very clear for 

I / w  1 / w  

1.o- 1,o 

0.5 

,~ = l / b  

] T I 1 
0.1 0.2 0,3 0.4 0.5 

0.5 

6 = 1 - - c  
I I I I I 

0,1 0.2 0.3 0.4 0.5 

Fig. 4. T h e  ve loc i ty  v.. nea r  the  wall  versus  6 = 1/b a n d  6 = 1 - c .  
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both models. For large 6, the function v,,(6) increases more and more 
slowly, and apparently has a finite asymptote v,.( + oo). This happens for a 
simple reason--the energy balance in the system. Given a linear velocity 
profile u(y)=yy, the energy balance with the minimal temperature 
T(y)=-O gives ym~x=V/-6/L, so that 

v,. ..... = v/-6/2 ~ 1.225 (7.6) 

Indeed, the largest velocity near the wall we observed in our simulations 
(say, with b = 0  or c=0.2) was around 1.2. Under these conditions, 
however, the laminar velocity profile breaks down. 

8. D I S C U S S I O N  

In Section 5 we obtained an equality between the phase-volume 
contraction A~t defined in (5.2) for the mSNS produced by our model and 
the hydrodynamic entropy production/~ defined in (4.2) for the MSNS, in 
the limit L ~ oo, 6 ~ 0, with 6L = a fixed. To understand the origin of this 
equality, also found approximately in our computer simulations, we will 
analyze here in more detail the production of entropy in nonequilibrium 
macroscopic systems discussed in Section 4 for SNS. This will use formal 
manipulations of various expressions for the entropy of such systems whose 
justification requires, at the minimum, the validity of dissipative hydro- 
dynamics, e.g., the Navier-Stokes equations of Section 3, obtained as a 
scaling limit in going from microscopic to macroscopic descriptions of our 
system. It will assume ipso facto the existence of LTE in these systems, 
since this is required for the derivation of the hydrodynamic equationsJ ~'~ 
While these assumptions are very reasonable for systems not too far from 
equilibrium, where the interactions (collisions) between the particles, tending 
to bring the system to equilibrium, dominate locally over the external 
forces and fluxes pushing the system away from equilibrium, such results 
are very far from being proven for systems with Hamiltonian dynamics. 
Even their derivative from the Boltzmann equation is still incompleteJ 241 
Given this "situation, there seems little point in giving any proofs here-- 
even for those parts where this may be possible. Instead the analysis should 
be thought of as heuristic and suggestive. 

For a system in LTE with hydrodynamic variables n(r, t), u(r, t), and 
e(r, t), corresponding to particle density, velocity, and energy density, 
respectively, evolving according to hydrodynamic equations, the hydro- 
dynamic entropy Sh of the system at any time t is the integral of Seq(n, e'), 
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the entropy density in a unifmw, equilibrium system with densities n 
and el,  {1'11" 25) 

Sh--fVo,L,,,,~ S~q(n(r), e'(r)) dr (8.1) 

where e ' ( r )=  [e( r ) - �89  is the thermal energy density. For an 
equilibrium system, u has to be independent of r and can therefore be 
removed by a Galilean transformation. 

We also have, essentially from the definition of LTE, that macroscopic 
systems in LTE have a local microscopic description which is, to leading 
order, the same as that for a uniform equilibrium system with the same 
parameters; i.e., if we consider a "small" macroscopic volume element 
around r, its properties will be approximately given by the grand-canonical 
ensemble, assumed to be equivalent to the canonical or microcanonical 
ensemble, specified by the local values of n, u, and e, at time t. lal'351 The 
dissipative fluxes are then related by the transport coefficients to the 
gradients of the hydrodynamic variables, which are very small on the 
microscale. 

Let us call Jr  the macroscopic state specified by the hydrodynamic 
variables {n, u, e} and let v(X; d4) be the grand canonical ensemble with 
local chemical potential and temperature appropriate to n(r), e'(r). Then 
we have that Sh is equal to the Gibbs entropy S(; defined in (4.4), corre- 
sponding to p = v, ~j~'25̀ 3s~ 

Sh ~-- Sc;(v) =- - - f  v(X; ,r log v(X; J / )  dX (8.2) 

It is furthermore true, as observed by Boltzmann, that the hydro- 
dynamic entropy Sh of a system in the macrostate Jg is equal to the 
logarithm of the phase-space volume F(.#)  associated with the macro- 
scopic state o# = {17, u, e},~26~ i.e., 

Sh ~ S d J / )  = log F(Jr (8.3) 

[Note that St3(Jr may make sense even when .#  does not correspond to 
an LTE state, when Sh is not well defined. We shall not consider such cases 
here, however, so (8.3) will always hold.] 

The equality between the different expressions for the macroscopic 
entropy of systems in LTE given in (8.1)-(8.3) depends crucially on the 
large separation of scales between the micro and macro descriptions. 
It holds to leading order in the ratio of micro- to macroscales, e.g., IlL 
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defined in Section 7, and becomes exact, in the sense that it has the same 
limiting value when divided by the number of particles in the system, only 
when the ratio of micro- to macroscales goes to zero, the hydrodynamic 
scaling limit. For  real systems the equality is only approximate, as are the 
hydrodynamic equations, etc. We shall, however, following Newton in a 
different but similar context, 136) assume that "'the error will not be sensible; 
and therefore this ... may be considered as physically exact" (italics added) 
and will therefore treat (8.2) and (8.3) as true equalities. 

Taking the time derivative of (8.1) using the standard equilibrium 
relations for derivatives of Scq, we obtain 

(8.4) 

where 2(r, t) is the local chemical potential and T(r, t) the local tem- 
perature. The integrand in (8.4) can be rewritten as 

OSeq (~ 
Ot Dr j.,.(r,t)+a(r,t) 

where j.,. is the entropy flux and a(r, t) is the local entropy production. The 
latter can be written in a form similar to (4.1) in terms of the full pressure 
tensor P(r, t), heat flux J(r,  t), etc., and is nonnegative by the second 
law.i i.,7,35) We thus find 

S,,(t)+fs,rr~cj.,.(r, t ) .  ds = fro, .... a(r, t)dr=-Rt(t)>~O (8.5) 

For  an isolated macroscopic system the integral of j.,. over the surface 
vanishes and the rate of change of Sh(t) is then given by R/(t). We can thus 
interpret R~ as the rate at which SB is produced inside the system when it 
is in LTE (LTE was implicitly assumed in Sections 3 and 4.1 ). Further- 
more, since the system is isolated, we expect it to approach, as t ~ oo, 
a uniform global equilibrium state, with Sh~Scq=(Volume).SeqOi, 0') 
and R / ~ 0. " 

Consider next the hydrodynamic description of an "open" macro- 
scopic system subjected to external forces and able to exchange heat 
through its surface with k heat baths maintained at temperatures T~, 

= 1 ..... k. (In the shear flow case we could have the walls at different tem- 
peratures.) We will now have, using (8.5) for the time derivative of the 
system's hydrodynamic entropy, assuming that the part of the system in 
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contact with the 0cth heat bath has a temperature very close to T~ (we are 
considering for simplicity the "no-slip" vase), 

s , . ( t )  = R , i t )  - ~ J . ( t ) / T ~  (8.6) 

Here J~ is the heat flux from the system to the ~th heat bath, i.e., J~/T~ is 
the net hydrodynamic entropy flux leaving the system through that part 
of the surface which is at temperature T~. Thus J,/T,  is analogous to the 
equilibrium relation dS= dQ/T extended to quasistationary processes; see 
in particular Chapter 14 in Balian's book. c~ Note that, in accordance with 
(8.2), the external mechanical forces do not contribute directly to the 
entropy change, as they do not, by Liouville's theorem, change the phase- 
space volume l-'(,/g) available to the macrostate ~,/'/. 

When the differences in the T~ and the magnitude of the external 
forces are not too large we expect this system to come to a stationary LTE 
state in which ~r vanishes, with 

R l ~  R l = ~  J~/T~ (8.7) 

in accord with (4.2), for laminar shear flow. 
Let us investigate now the statistical microscopic description of these 

macroscopic situations. Following the usual procedures of statistical 
mechanics for macroscopic systems, we represent their macroscopic state 
J /  at time t by a suitable ensemble density /2(X, t). This 12 is assumed 
to have the property that the hydrodynamic variables J / , =  {17, u, e} 
obtained as expectation value with respect to/2(X, t) of the corresponding 
phase-space functions are sharply defined (very little dispersion with 
respect to/2), vary slowly in space and time on the microscopic scales, and 
evolve, on the appropriate macroscopic scales, accoding to the hydro- 
dynamic equations. We will associate to /2(X, t)-/2,(X) the local equi- 
librium ensemble density v(XI J6,,) and, with some abuse of notation, shall 
set v(X] o/~,,) = v,(X). N.B.: While we assume that our system is in LTE, we 
are not assuming here that/2, = v,. 

We now take the Gibbs entropy S~ of the ensemble density/2, defined 
in (4.4) and split in into two parts, 

SG(/2,) = SG(t ) = -- f/2,(..~") log/2,(X) dX 

= --f/2,(X)log[/2,(JO/v,(X)] dX 

+ f/2,(X) log v,(X) dX (8.8) 
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The first term on the right side of (8.8) is the relative entropy of kt, with 
respect to v, (which is negative, or zero, by convexity of x logx) .  To 
evaluate the second term, we use the fact that, by the definition of v, as a 
locally grand-canonical ensemble density, log v(X) is a function of X whose 
average is expressible in terms of o#--{n,  u, e}. Now, by the definition of 
v, these are the actual hydrodynamic variables in our system, so that the 
second term is equal to ~ v,(X) log v,(X) dX. Hence the second term in (8.8) 
is, using (8.2), equal to Sh(t), and we therefore have that 

SG(t) = SG(p, I V,) + Sh(t) (8.9) 

Equation (8.9), which is valid for all macroscopic systems in LTE, gives an 
important connection between So and Sh for such systems. 

For an isolated system with a given Hamiltonian H, we write 
X =  .~j(X) for the flow in the phase space. The ensemble density It(X, t) 
then evolves according to the Liouville equation, 

Op(X, t) 
Ot 5~ = --div(pffH) = -Vp.-~-H (8.10) 

subject to some initial condition p(x, 0) =p0(X). (We think of X, ~-, V as 
2dNodimensional vectors in the phase space and in the 1st equlity used the 
fact that div ~ ,  = 0.) As was already known to Gibbs, and is proven in 
almost every textbook on statistical mechanics, So(t) is constant in time 
tbr an isolated system. Hence, using (8.9), we have 

ScJ(t) = ,~o(kt, I v,) + Sh(t) = 0 (8.11) 

o r  

Sc(lu, I v,)= -~q~,(t)= - R~(t) (8.12) 

Note that in going from (8.11) to (8.12) we are glossing over the difference 
between microscopic and macroscopic time scalesJ ~t'25'35~ In the same 
spirit we will also have that Rz( t )= ( /~ / ) ,  where R / is a suitable micro- 
scopic function and the average is with respect to p,, not v,. 

As t--* ~ ,  we expect that p, and v, will both "approach" the Gibbs 
distribution/.tcq appropriate for a macroscopic system in equilibrium with 
a uniform temperature and density. Note, however, that while Sh(t) 
approaches S~q, the Gibbs entropy SG(p,), being constant, clearly does not. 
Hence ifp0(X) is not an equilibrium state, the limit, as t ~ ~ ,  of Sc,(p, [ v,) 
will be Srj(0)-Scq,  which is negative and can be large, i.e., extensive, 
indicating the "entanglement" of p,(X) necessary to keep Sc constant. 
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An explicit example where S(;(p, [ Vl) can be shown to be extensive for 
large t occurs for noninteracting point particles moving among a periodic 
set of fixed scatterers, the periodic Lorentz gas or Sinai billiard, which are 
started at t = 0  in a product measure with the same energy (speed) and a 
macroscopically nonuniJbnn density. The density then evolves on the 
macroscopic scale according to the diffusion equation (see refs. 11 and 25 
and references therein. This leads to a uniformization of the density and an 
increase in Sh(t), while S(;(t) remains constant. The entanglement ofp , (X)  
corresponds here to the build up to correlations between the positions and 
velocities of the particles in the system as it evolves toward a spatially 
uniform state. (The lack of interaction between the particles makes this 
system a bit unphysical.) 

We turn now to the statistical mechanics of open systems, e.g., a fluid 
with shear flow, whose macroscopic behavior is described by the compressible 
Navier-Stokes equations Modeling such a system microscopically as one 
driven by stochastic thermal reservoirs and some external forces, e.g., 
rough walls with constant temperatures and velocities, as in Section 4.2, we 
obtain the time evolution ofp(X,  t) as ~4"5~ 

(8.13) 

Here ~ represents the stochastic effect of the eth reservoir, which tries to 
bring the system to equilibrium with a temperature T~, and c~op = 
- . ~ V p ,  assuming that the external foce ~.~ is (phase-space) divergence- 
flee. The Gibbs entropy S(~(t) will no longer be constant in time, so (8.12) 
will no longer hold. Assuming the system to be in LTE, we shall have 
instead of (8.12) the behavior given in (8.6), with 

(8,14) 

where ( �9 ) is the average with respect to/~(X, t) of the phase-space func- 
t i ons /~  and Y~; ,7~ specifies the rate at which energy flows from the system 
to the 0~th reservoir. As in (8.6), we are ssuming here that in our system the 
spatial region in contact with the 0tth reservoir is itself at a temperature 
very close to T~. [Compare  (8.14) with (4.3), where there is no assumption 
of LTE; ~ there corresponds to Sc~(P, [ v l )+  Rt.] 

We may assume that our ensemble density/t(X, t), evolving according 
to (8.13), will, in contrast to what happens in an isolated system, approach 
a smooth stationary density fi(X), while v,(X) ~ ~(X) = v(X[ j/~,).~4,5,,, 
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Thus, for t---, ~ ,  Sh(t) will approach the hydrodynamic entropy S~, in the 
MSNS, which according to (8.2) is given by 

Sh = -- f 9(X) log ~(X) dX (8.15) 

Setting S~(t)=0,  in (8.14) and letting/~ be the internal entropy produc- 
tion in the stationary state, we have 

K , = ~  (L) , , /T~  (8.16) 

Comparing (8.16) with (8.7), we can identify the average of Y, with respect 
to fi, (Y~)jT, with the hydrodynamic steady-state energy flux ]~, which, for 
a system in LTE, should be just (Y~),.. Since we further expect that the 
stochasticity of the reservoirs will make the stationary /Y a "smooth" 
density, independent of the initial Ito, we should also have here 

s~(t)~O, s,;(~, I v,)--+s~(~l ~) for t--*m (8.17) 

Let us turn now to the microscopic modeling of the open macroscopic 
systems by "thermostatted" deterministic forces .~.,(X) which conserve the 
energy but whose divergence does not vanish, e.g., the Maxwell-demon 
boundary drives discussed in this paper. For the sake of simplicity we shall 
treat ~ ( X )  as if it were smooth, but think of it as acting only in the 
vicinity of the boundaries; the transition to a boundary term should then 
be possible (see the Appendix). The time evolution of a microstate X will 
now be given by the deterministic equation 

~ =  ,~,,(x) + ~,.,(x) (8.18) 

and that ofp(X, t) by 

0]l 
- - div[ ( , ~  + .~,~)/t] (8.19) 

Ot 

Taking the time derivative of SG(t), we get, as in (4.6), 

$~(t) = f p,(X) div ,~(X) d X -  --M(t)  (8.20) 



984 Chernov and Lebowitz  

We also have, using (8.8) and (8.9), for systems in LTE, that 

Sh(r) --dt It'(X) log v,(X) dx 

= - f  ~ t (V  .ix,) log v, dx 

0 
- f  div(..~.~)/~,logv, dx-[la,(X)~tlogv,(X)dX (8.21) 

In the last term on the rhs of (8.21) we can replace fl, by v, since the 
time derivative of log v, at a fixed X involves only phase-space functions 
whose expectation corresponds to the hydrodynamic variables. After this 
replacement the last term becomes (d/dt)~ v,(X)dX, which vanishes by 
normalization. We are thus left with 

,~h(t) = - f  (~.Vl.t,)logv, dX+ f kt,.~t,.Vlogv, dX (8.22) 

We now want to argue that for "smooth" thermostatted forces we can 
again replace/2, by v, in the last term in (8.22), obtaining 

I v,.~t~ �9 V log v, dX= - I..~ts. Vv, dX 

= f v, div "~s dX-- --Mi(t) (8.23) 

We also argue that then first term on the right side of (8.22), which is 
the only term present in an isolated system, is just Rt(t). Accepting these 
"arguments," we finally get for systems with thermostatted forces in LTE 

Sh(t) = Rt(t)- Ml(t) (8.24) 

We note that (8.24) gives a decomposition of the rare of change of Sh 
into an internal part R~ coming from the dissipative fluxes inside the system 
and a thermostatted part - M ~  coming from the thermostat forces ~tts. 
Comparing this with (8.4) and remembering that ~ does not change n 
or e, we have that M~ will contribute only to the 1st term there, 
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In fact, M~ corresponds to the surface term in (8.5), which for the models 
considered in this paper is equivalent to the second term on the right side 
of (8.6): it represents the production (or reduction) of Sh due to the conver- 
sion of thermal into directed energy by the Maxwell demons producing the 
~ s  at the boundary. 

Interestingly, the contribution of the ~ts to Sh, -M~(t) ,  is just the rate 
of change of Sa(t) when p, = v,. It is tempting to try and bypass the formal 
manipulations leading to (8.24) and derive that relation more directly from 
the definition of SB(J[) in (8.3) as l og / ' ( J [ ) ,  but we have not yet succeeded 
in doing this. 

Waiting now for a time { which is long enough for the system to 
become approximately stationary on the macroscopic level, we would have 
Sh( t )~0  for t>~L and thus 

/~/= )~rl (8.25) 

Equation (8.25) explains the equality between (5.12) and (5.15). I f  it is 
further true that div X is sufficiently smooth for its average to be well 
approximated by Mt, then we would have M = )Q't = R~. This appears to be 
the case in many situations, including the Maxwell-demon boundaries con- 
sidered in this paper, where div X is an additive function of the coordinates 
and velocities of each particle so that its average M depends only on the 
one-particle distribution function at the wall. This leads to M ~  R~, which 
we observe in our simulations. We actually expect the equality (8.25) to 
hold for general thermostatted SNS as long as LTE holds in the SNS. It 
should in particular hold for macroscopic fluids driven by rules (2.3) or 
(2.4) even when the flow is no longer laminar. We hope to test this via 
simulations on large systems. 

APPENDIX.  SPECIAL REFLECTION RULES 

It seems reasonable to expect that time-reversible reflection rules, like 
rule b, can be obtained as limits of the usual smooth Gaussian thermo- 
statted dynamicsJ 7'81 We describe here a very simple example of such a 
limit which also provides an illustration of the relation between M~ and/~t,  
discussed in Section 8. 

Let a constant oblique force F = (E cos fl, - -Es in  fl) act in the half- 
plane y>~L/2 above the box, and a symmetric force F = ( - E c o s f l ,  
Esinf l )  act below the below the box, in the area y ~ - L / 2 .  Here 
0 < fl < ~/2 is a fixed parameter and E > 0 is very large, "almost infinite." 
Such a force effectively replaces the walls. The force is accompanied by a 

822/86/5-6-6 
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Gauss ian  constra int  which keeps the kinetic energy of  the particle fixed/7.8} 
The mot ion  of  a single particle in the region y ~ L/2 is then governed by 
the equat ions  

.X" ---- Vx,  3) = Vy 

and + = "~t., is given by 

O.,. = E cos fl -- ccv.,. 

g.,. = - E  sin fl - ccv.,. 

where 

Ev ,. cos fl - Ev,. sin [3 
or  " , ~ " (A.1) 

v:. + v;. 

so that  v 2 is constant.  Symmetr ic  equat ions  hold for y <~ - L / 2 .  
Taking  now the limit E--* 0% we find that  this model  reduces to our  

Maxwel l -demon model  (2.1) with a specific function f=J i~"  To obta in  that,  
we take advantage  of  the conservat ion  of kinetic energy and rewrite the 
system (A. 1 ) as 

.X" = V COS 0 

); = v sin 0 (A.2) 

E 
6J = - - sin(O + fl) 

v 

where 0 =  tan J(v,./v,.) is the angle between the velocity vector  (v.,., v.,.) and 
the x axis. The last equat ion in (A.2) is independent  of  the first two, and 
has an implicit solution given by 

in I 1 + c o s ( 0 + f l )  ] Et 
l ~ J  = 2 - - v  (A.3) 

It is, however,  more  convenient  to differentiate 0 with respect to the height 
h = y - L/2, yielding 

dO E sin(O + fl) 
(A.4) 

dh v 2 sin 0 
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An implicit solution of this equation is 

Eh 
(O+/3)cosfl-sinfl.ln Is in(O+fl) l= v2 (A.5) 

Since h = 0 both as the particle enters the force zone and as it leaves it, the 
relation between the incoming angle ~o=Oi. and the outgoing angle 

= -Oout is determined by the equation 

F/~( -~)  = F/~(q~) (A.6) 

where 

F/i(0) := (0 + fl) cos fl - sin ft. In I sin(0 + fl)l (A.7) 

These equations do not contain the force strength E. By taking the 
limit E ~  ~ we simply assure that the particle leaves the force zone 
instantly, the moment it enters it. Therefore, the infinite force acts like a 
well at which the particle gets reflected, and the outgoing angle ff is related 
to the incoming angle ~o by Eq. (2.1) with J~(cp)=--F/7~F/~(~o). 

For E very large the time any particle spends in the foce zone is 
extremely short, so we can neglect possible collisions between particles 
while one of them is in that zone. In fact if a particle enters the foce zone 
at time s and leaves it at time s + r, we can assume that there is no other 
particle in the force zone between s and s + r. Under these conditions the 
analysis of Section 8 takes on a particularly simple form. 

Assuming that the stationary state is one of  LTE, the one-particle 
distribution #~ the region ofthefield is a local Maxwellian where ~(r,  v) is 
given by 

~U(r, v) = n(r)(2rcT,,.)-' exp{ - (v-- v,,.)2/2T,,.} (A.8) 

Using the definition of ~t~ in (8.23) with 4.,  given in (A.1), we obtain 

T,7 & ,) dv 

(A.9) 
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In going from the second to the third equality on the right side of 
(A.9) we used the conservation of energy by ~,~, i.e., i"~t~=0.  The final 
term is easily recognized as corresponding to the last term in (8.4), giving 
the entropy production due to ~ .  It becomes equal to Kt in (4.2) in the 
limit E---, oo, giving .,Q~ =/~'~ for such systems in LTE. 
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